If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+125x+500=0
a = 5; b = 125; c = +500;
Δ = b2-4ac
Δ = 1252-4·5·500
Δ = 5625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5625}=75$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(125)-75}{2*5}=\frac{-200}{10} =-20 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(125)+75}{2*5}=\frac{-50}{10} =-5 $
| 3x+-1x=14 | | 25+x=169,x | | (2z+3)+(2z+3)=z | | (2z+3)+2z+3)+3z+3z=106 | | 41-x=99 | | (2z+3)^2+3z+3z=106 | | 12-4x=-6x+16 | | 5x=2000+2.5x | | (3/4)x=4 | | x^2-4=-3x^2+2x+8 | | C=22n+12 | | 8=-5t^2+20t | | 8=5-t^2+20t | | -5t^2+20t-8=0 | | m-8m=12 | | -14+5b+7-2b=1+5b | | 12^x+7=900 | | 12^x+7^3=900 | | 12^x+7^5=900 | | 12^x+7^2=900 | | 12^3+7^y=900 | | 12^2+7^y=900 | | 9-3x2=3 | | 8x=(23)x=23x | | x+.03x=100000 | | x+.3x=100000 | | 161=57-u | | 4(n-66)=56 | | 3600=(x+500)+x+(x÷2) | | 9(s+1)=81 | | 7(u+3)=35 | | 5.25(2.5t+4.67)=35.98 |